18 research outputs found

    Legal compliance support with an ontology-based information system

    Get PDF
    The Internet and Information Systems evolution have dramatically increased the amount of information hold by governments and companies. This information can be very sensitive, specially regarding personal data, so governments and industries promote acts and guidelines in order to ensure privacy and data security. Thus, companies have to consider legal and Information Technology (IT) compliance. Nevertheless, compliance assessment is still a manual task performed by experts, but steps towards an automated compliance assessment, both in IT and legal, are in progress. In this paper we introduce the Neurona framework, a software application based on legal and security ontologies that aims at providing organizations with legal compliance support

    Service providers accountability

    Get PDF
    The goal of this paper is to guide through some obscure parts of the regulation and legislation related to technology. Even if we are not experts on security Internet, we will try to explain the difficulties that lawyers should be aware of when regulating rights and limits in the net. Some real cases related to service providers (ISP and others) are described and complemented with the technological context of each case

    Modeling expert knowledge in the mediation domain: a mediation core ontology

    Get PDF
    In this paper we introduce the Mediation Core Ontology (MCO), and the steps taken in order to model the expert knowledge on the mediation domain. MCO is created from scratch by eliciting practical knowledge from mediation experts to identify the basic working concepts of the domain. MCO offers initial support towards knowledge acquisition and reasoning and, in later steps, will serve as a general basis for the development of different mediation domain and sub-domain ontologies to be used by the ONTOMEDIA mediation platform, currently also under development

    Modeling expert knowledge in the mediation domain: a middle-out approach to design ODR ontologies

    Get PDF
    In this paper we describe the steps taken to model expert knowledge within the mediation domain as the basis for the design of the Mediation Core Ontology (MCO), of which we also offer a first outline of its present stage of development. MCO is created from scratch by eliciting practical knowledge from mediation experts to identify the basic working concepts of the domain. MCO offers initial support towards knowledge acquisition and reasoning and, in later steps, will serve as a general basis for the development of different mediation domain and sub-domain ontologies to be used by the ONTOMEDIA mediation platform, currently also under development

    Desenvolupament d'aplicacions per a dispositius mòbils

    Get PDF
    La finalitat d'aquest projecte és obtenir una visió global de la programació per dispositius mòbils i a més fer una avaluació del que podria costar (tant les eines com el reciclatge de programadors) a una empresa dedicada a TIC començar a implementar aplicacions per a dispositius mòbils. Amb un plantejament molt ampli al principi i reduït només a tres opcions (BlackBerry, Windows Mobile i Android), es desenvolupa una aplicació per aquests dispositius. Els resultats obtinguts mostren que a nivell econòmic les millors opcions són el desenvolupament per Android (gratuït) i per BlackBerry (20 dòlars). Però en canvi a nivell d'adaptació dels llenguatges de programació la opció de Windows Mobile és la que presenta menys obstacles per passar de coneixements de programació d'aplicacions de servidor o sobre taula (en entorn .NET) a dispositius mòbils.El objetivo de este proyecto es tener una visión global de la programación para dispositivos móviles y realizar una evaluación del coste (tanto de las herramientas como del reciclaje de programadores) que tendría desarrollar este tipo de aplicaciones para una empresa dedicada a las TIC. El planteamiento amplio inicialmente se tuvo que reducir a tres opciones (BlackBerry, Windows Mobile y Android), para las cuales se ha desarrollado una aplicación. Los resultados obtenidos nos muestran que económicamente las mejores opciones son el desarrollo para Android (gratuito) y para BlackBerry (20 dólares). Pero en cambio a nivel de adaptación de programadores de entornos de escritorio o servidores (en entorno .NET) a dispositivos móviles, Windows Mobile es el que presenta menos dificultades.The aim of this project is to obtain a global vision about programming oriented to mobile devices and to evaluate the different costs -the tool costs and the difficulties of adapting programmers from Desktop programs to mobile devices applications - for a company dedicated to IT. The broad initial objectives had to come down to three options (BlackBerry, Windows Mobile and Android), and we have developed an application for each. We show that the cheapest options are developing for Android (free) and BlackBerry (20 dollars). However the easiest one to adapt programmers who have experience programming desktop or server applications (in .NET environment) is Windows Mobile

    Diseño de "Double folded slot antenna" a 94 GHz

    No full text

    Desenvolupament d'aplicacions per a dispositius mòbils

    No full text
    La finalitat d’aquest projecte és obtenir una visió global de la programació per dispositius mòbils i a més fer una avaluació del que podria costar (tant les eines com el reciclatge de programadors) a una empresa dedicada a TIC començar a implementar aplicacions per a dispositius mòbils. Amb un plantejament molt ampli al principi i reduït només a tres opcions (BlackBerry, Windows Mobile i Android), es desenvolupa una aplicació per aquests dispositius. Els resultats obtinguts mostren que a nivell econòmic les millors opcions són el desenvolupament per Android (gratuït) i per BlackBerry (20).PeroˋencanvianivelldadaptacioˊdelsllenguatgesdeprogramacioˊlaopcioˊdeWindowsMobileeˊslaquepresentamenysobstaclesperpassardeconeixementsdeprogramacioˊdaplicacionsdeservidorosobretaula(enentorn.NET)adispositiusmoˋbils.Elobjetivodeesteproyectoestenerunavisioˊnglobaldelaprogramacioˊnparadispositivosmoˊvilesyrealizarunaevaluacioˊndelcoste(tantodelasherramientascomodelreciclajedeprogramadores)quetendrıˊadesarrollarestetipodeaplicacionesparaunaempresadedicadaalasTIC.Elplanteamientoamplioinicialmentesetuvoquereduciratresopciones(BlackBerry,WindowsMobileyAndroid),paralascualessehadesarrolladounaaplicacioˊn.LosresultadosobtenidosnosmuestranqueeconoˊmicamentelasmejoresopcionessoneldesarrolloparaAndroid(gratuito)yparaBlackBerry(20). Però en canvi a nivell d’adaptació dels llenguatges de programació la opció de Windows Mobile és la que presenta menys obstacles per passar de coneixements de programació d’aplicacions de servidor o sobre taula (en entorn .NET) a dispositius mòbils.El objetivo de este proyecto es tener una visión global de la programación para dispositivos móviles y realizar una evaluación del coste (tanto de las herramientas como del reciclaje de programadores) que tendría desarrollar este tipo de aplicaciones para una empresa dedicada a las TIC. El planteamiento amplio inicialmente se tuvo que reducir a tres opciones (BlackBerry, Windows Mobile y Android), para las cuales se ha desarrollado una aplicación. Los resultados obtenidos nos muestran que económicamente las mejores opciones son el desarrollo para Android (gratuito) y para BlackBerry (20). Pero en cambio a nivel de adaptación de programadores de entornos de escritorio o servidores (en entorno .NET) a dispositivos móviles, Windows Mobile es el que presenta menos dificultades.The aim of this project is to obtain a global vision about programming oriented to mobile devices and to evaluate the different costs –the tool costs and the difficulties of adapting programmers from Desktop programs to mobile devices applications – for a company dedicated to IT. The broad initial objectives had to come down to three options (BlackBerry, Windows Mobile and Android), and we have developed an application for each. We show that the cheapest options are developing for Android (free) and BlackBerry (20$). However the easiest one to adapt programmers who have experience programming desktop or server applications (in .NET environment) is Windows Mobile

    Recent advances and challenges in food-borne allergen detection

    Full text link
    [EN] Food allergy is reported as the commonest adverse reaction to food components, whose prevalence has increased in recent years. As food avoidance is mainly in practice the only way to prevent hypersensitive consumers from ingesting allergenic substances, it is imperative to provide complete and accurate in-formation on food ingredients. In this scenario, there is a need for precise, fast and cost-effective methods for the high-throughput screening of specific allergen content in food products. This work reviews recent approaches, existing kits for food-borne allergen detection and cutting-edge applications by focusing on the sensitivity, selectivity and applicability of current methods in food samples. In addition, the advantages, benefits and limitations of each approach are discussed to establish the most suitable methods and which challenges are to be addressed in forthcoming years from an analytical viewpoint. (C) 2020 Elsevier B.V. All rights reserved.This work has been funded by the Agencia Estatal de Investigacion, Spain (CTQ2016-75749-R, FEDER)Sena-Torralba, A.; Pallás-Tamarit, Y.; Morais, S.; Maquieira Catala, A. (2020). Recent advances and challenges in food-borne allergen detection. TrAC Trends in Analytical Chemistry. 132:1-21. https://doi.org/10.1016/j.trac.2020.116050S121132Bruijnzeel-Koomen, C., Ortolani, C., Aas, K., Bindslev-Jensen, C., Björkstén, B., Moneret-Vautrin, D., & Wüthrich, B. (1995). Adverse reactions to food. Allergy, 50(8), 623-635. doi:10.1111/j.1398-9995.1995.tb02579.xMontalto, M., Santoro, L., D’Onofrio, F., Curigliano, V., Gallo, A., Visca, D., … Gasbarrini, G. (2008). Adverse Reactions to Food: Allergies and Intolerances. Digestive Diseases, 26(2), 96-103. doi:10.1159/000116766Ortolani, C., & Pastorello, E. A. (2006). Food allergies and food intolerances. Best Practice & Research Clinical Gastroenterology, 20(3), 467-483. doi:10.1016/j.bpg.2005.11.010Turnbull, J. L., Adams, H. N., & Gorard, D. A. (2014). Review article: the diagnosis and management of food allergy and food intolerances. Alimentary Pharmacology & Therapeutics, 41(1), 3-25. doi:10.1111/apt.12984Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., … Nucera, E. (2008). Food allergy and food intolerance: diagnosis and treatment. Internal and Emergency Medicine, 4(1), 11-24. doi:10.1007/s11739-008-0183-6Morais, S., Tortajada-Genaro, L. A., Maquieira, Á., & Gonzalez Martinez, M.-Á. (2020). Biosensors for food allergy detection according to specific IgE levels in serum. TrAC Trends in Analytical Chemistry, 127, 115904. doi:10.1016/j.trac.2020.115904Gendel, S. M. (2012). Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology, 63(2), 279-285. doi:10.1016/j.yrtph.2012.04.007Bucchini, L., Guzzon, A., Poms, R., & Senyuva, H. (2016). Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Additives & Contaminants: Part A, 33(5), 760-771. doi:10.1080/19440049.2016.1169444Yin, H.-Y., Chu, P.-T., Tsai, W.-C., & Wen, H.-W. (2016). Development of a barcode-style lateral flow immunoassay for the rapid semi-quantification of gliadin in foods. Food Chemistry, 192, 934-942. doi:10.1016/j.foodchem.2015.06.112Flom, J. D., & Sicherer, S. H. (2019). Epidemiology of Cow’s Milk Allergy. Nutrients, 11(5), 1051. doi:10.3390/nu11051051Caubet, J.-C., & Wang, J. (2011). Current Understanding of Egg Allergy. Pediatric Clinics of North America, 58(2), 427-443. doi:10.1016/j.pcl.2011.02.014Lopata, A. L., Kleine-Tebbe, J., & Kamath, S. D. (2016). Allergens and molecular diagnostics of shellfish allergy. Allergo Journal International, 25(7), 210-218. doi:10.1007/s40629-016-0124-2Tong, W. S., Yuen, A. W., Wai, C. Y., Leung, N. Y., Chu, K. H., & Leung, P. S. (2018). Diagnosis of fish and shellfish allergies. Journal of Asthma and Allergy, Volume 11, 247-260. doi:10.2147/jaa.s142476Weinberger, T., & Sicherer, S. (2018). Current perspectives on tree nut allergy: a review. Journal of Asthma and Allergy, Volume 11, 41-51. doi:10.2147/jaa.s141636Cordle, C. T. (2004). Soy Protein Allergy: Incidence and Relative Severity. The Journal of Nutrition, 134(5), 1213S-1219S. doi:10.1093/jn/134.5.1213sCianferoni, A. (2016). Wheat allergy: diagnosis and management. Journal of Asthma and Allergy, 13. doi:10.2147/jaa.s81550Pałgan, K., Żbikowska-Gotz, M., & Bartuzi, Z. (2018). Dangerous anaphylactic reaction to mustard. Archives of Medical Science, 14(2), 477-479. doi:10.5114/aoms.2016.60580Guillamón, E., Rodríguez, J., Burbano, C., Muzquiz, M., Pedrosa, M. M., Cabanillas, B., … Cuadrado, C. (2010). Characterization of lupin major allergens (Lupinus albus L.). Molecular Nutrition & Food Research, 54(11), 1668-1676. doi:10.1002/mnfr.200900452Breiteneder, H., Hoffmann-Sommergruber, K., O’Riordain, G., Susani, M., Ahorn, H., Ebner, C., … Scheiner, O. (1995). Molecular Characterization of Api g 1, the Major Allergen of Celery (Apium graveolens), and Its Immumological and Structural Relationships to a Group of 17-kDa Tree Pollen Allergens. European Journal of Biochemistry, 233(2), 484-489. doi:10.1111/j.1432-1033.1995.484_2.xLipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR Journal, 46(3), 258-268. doi:10.1093/ilar.46.3.258Ascoli, C. A., & Aggeler, B. (2018). Overlooked benefits of using polyclonal antibodies. BioTechniques, 65(3), 127-136. doi:10.2144/btn-2018-0065Tranquet, O., Lupi, R., Echasserieau-Laporte, V., Pietri, M., Larré, C., & Denery-Papini, S. (2015). Characterization of Antibodies and Development of an Indirect Competitive Immunoassay for Detection of Deamidated Gluten. Journal of Agricultural and Food Chemistry, 63(22), 5403-5409. doi:10.1021/acs.jafc.5b00923Costa, J., Ansari, P., Mafra, I., Oliveira, M. B. P. P., & Baumgartner, S. (2015). Development of a sandwich ELISA-type system for the detection and quantification of hazelnut in model chocolates. Food Chemistry, 173, 257-265. doi:10.1016/j.foodchem.2014.10.024Schocker, F., Scharf, A., Kull, S., & Jappe, U. (2017). Detection of the Peanut Allergens Ara h 2 and Ara h 6 in Human Breast Milk: Development of 2 Sensitive and Specific Sandwich ELISA Assays. International Archives of Allergy and Immunology, 174(1), 17-25. doi:10.1159/000479388He, S., Li, X., Gao, J., Tong, P., & Chen, H. (2017). Development of a H 2 O 2 ‐sensitive quantum dots‐based fluorescent sandwich ELISA for sensitive detection of bovine β ‐lactoglobulin by monoclonal antibody. Journal of the Science of Food and Agriculture, 98(2), 519-526. doi:10.1002/jsfa.8489Castillo, D. S., & Cassola, A. (2017). Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLOS ONE, 12(7), e0182447. doi:10.1371/journal.pone.0182447Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y., & Ge, Y. (2011). Simultaneous Detection of Eight Food Allergens Using Optical Thin-Film Biosensor Chips. Journal of Agricultural and Food Chemistry, 59(13), 6889-6894. doi:10.1021/jf200933bKim, T.-E., Park, S.-W., Cho, N.-Y., Choi, S.-Y., Yong, T.-S., Nahm, B.-H., … Noh, G. (2002). Quantitative measurement of serum allergen-specific IgE on protein chip. Experimental & Molecular Medicine, 34(2), 152-158. doi:10.1038/emm.2002.22Xi, J., & Shi, Q. (2016). Development of an Indirect Competitive ELISA Kit for the Detection of Soybean Allergenic Protein Gly m Bd 28K. Food Analytical Methods, 9(11), 2998-3005. doi:10.1007/s12161-016-0493-7Segura-Gil, I., Blázquez-Soro, A., Galán-Malo, P., Mata, L., Tobajas, A. P., Sánchez, L., & Pérez, M. D. (2019). Development of sandwich and competitive ELISA formats to determine β-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control, 103, 78-85. doi:10.1016/j.foodcont.2019.03.035Panda, R., & Garber, E. A. E. (2019). Western blot analysis of fermented-hydrolyzed foods utilizing gluten-specific antibodies employed in a novel multiplex competitive ELISA. Analytical and Bioanalytical Chemistry, 411(20), 5159-5174. doi:10.1007/s00216-019-01893-0Sharma, G. M., Khuda, S. E., Parker, C. H., Eischeid, A. C., & Pereira, M. (2016). Detection of Allergen Markers in Food: Analytical Methods. Food Safety, 65-121. doi:10.1002/9781119160588.ch4Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A., & Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Analytical and Bioanalytical Chemistry, 395(1), 69-81. doi:10.1007/s00216-009-2715-yZheng, C., Wang, X., Lu, Y., & Liu, Y. (2012). Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control, 26(2), 446-452. doi:10.1016/j.foodcont.2012.01.040MASIRI, J., BENOIT, L., MESHGI, M., DAY, J., NADALA, C., & SAMADPOUR, M. (2016). A Novel Immunoassay Test System for Detection of Modified Allergen Residues Present in Almond-, Cashew-, Coconut-, Hazelnut-, and Soy-Based Nondairy Beverages. Journal of Food Protection, 79(9), 1572-1582. doi:10.4315/0362-028x.jfp-15-493Anfossi, L., Di Nardo, F., Russo, A., Cavalera, S., Giovannoli, C., Spano, G., … Baggiani, C. (2018). Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry, 411(9), 1905-1913. doi:10.1007/s00216-018-1451-6Quesada-González, D., & Merkoçi, A. (2015). Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics, 73, 47-63. doi:10.1016/j.bios.2015.05.050Li, J., & Macdonald, J. (2016). Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics, 83, 177-192. doi:10.1016/j.bios.2016.04.021Bishop, J. D., Hsieh, H. V., Gasperino, D. J., & Weigl, B. H. (2019). Sensitivity enhancement in lateral flow assays: a systems perspective. Lab on a Chip, 19(15), 2486-2499. doi:10.1039/c9lc00104bWang, Y., Li, Z., Lin, H., Siddanakoppalu, P. N., Zhou, J., Chen, G., & Yu, Z. (2019). Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control, 106, 106714. doi:10.1016/j.foodcont.2019.106714Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., & Jin, Z. (2018). Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chemistry, 269, 375-379. doi:10.1016/j.foodchem.2018.07.011PROTEON Express - Rapid test fot detection of allergens in food and working surfaces, Zeulab. (2018). https://www.zeulab.com/products.html/allergens/111-proteon-express.html accessed June 1, 2020).Chen, F., Ma, H., Li, Y., Wang, H., Samad, A., Zhou, J., … Jin, T. (2019). Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. Journal of Agricultural and Food Chemistry, 67(40), 11219-11229. doi:10.1021/acs.jafc.9b02388García-García, A., Madrid, R., González, I., García, T., & Martín, R. (2020). A novel approach to produce phage single domain antibody fragments for the detection of gluten in foods. Food Chemistry, 321, 126685. doi:10.1016/j.foodchem.2020.126685Croote, D., & Quake, S. R. (2016). Food allergen detection by mass spectrometry: the role of systems biology. npj Systems Biology and Applications, 2(1). doi:10.1038/npjsba.2016.22Sun, L., Lin, H., Li, Z., Sun, W., Wang, J., Wu, H., … Pavase, T. R. (2019). Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry, 276, 358-365. doi:10.1016/j.foodchem.2018.10.014Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331, 127276. doi:10.1016/j.foodchem.2020.127276Ma, X., Li, H., Zhang, J., Huang, W., Han, J., Ge, Y., … Chen, Y. (2020). Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control, 107, 106744. doi:10.1016/j.foodcont.2019.106744Jira, W., & Münch, S. (2019). A sensitive HPLC-MS/MS screening method for the simultaneous detection of barley, maize, oats, rice, rye and wheat proteins in meat products. Food Chemistry, 275, 214-223. doi:10.1016/j.foodchem.2018.09.041Monaci, L., De Angelis, E., Montemurro, N., & Pilolli, R. (2018). Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC Trends in Analytical Chemistry, 106, 21-36. doi:10.1016/j.trac.2018.06.016Bräcker, J., & Brockmeyer, J. (2018). Characterization and Detection of Food Allergens Using High-Resolution Mass Spectrometry: Current Status and Future Perspective. Journal of Agricultural and Food Chemistry, 66(34), 8935-8940. doi:10.1021/acs.jafc.8b02265Marzano, V., Tilocca, B., Fiocchi, A. G., Vernocchi, P., Levi Mortera, S., Urbani, A., … Putignani, L. (2020). Perusal of food allergens analysis by mass spectrometry-based proteomics. Journal of Proteomics, 215, 103636. doi:10.1016/j.jprot.2020.103636Pilolli, R., Nitride, C., Gillard, N., Huet, A.-C., van Poucke, C., de Loose, M., … Monaci, L. (2020). Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 128, 108747. doi:10.1016/j.foodres.2019.108747Prado, M., Ortea, I., Vial, S., Rivas, J., Calo-Mata, P., & Barros-Velázquez, J. (2015). Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens. Critical Reviews in Food Science and Nutrition, 56(15), 2511-2542. doi:10.1080/10408398.2013.873767Fraga, D., Meulia, T., & Fenster, S. (2008). Real‐Time PCR. Current Protocols Essential Laboratory Techniques, 00(1). doi:10.1002/9780470089941.et1003s00Yoshimura, T., Kuribara, H., Kodama, T., Yamata, S., Futo, S., Watanabe, S., … Hino, A. (2005). Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry, 53(6), 2060-2069. doi:10.1021/jf0483265Suh, S.-M., Park, S.-B., Kim, M.-J., & Kim, H.-Y. (2019). Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology, 28(5), 1593-1598. doi:10.1007/s10068-019-00591-ySuh, S.-M., Kim, M.-J., Kim, H.-I., Kim, H.-J., & Kim, H.-Y. (2020). A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry, 317, 126451. doi:10.1016/j.foodchem.2020.126451Mustorp, S. L., Drømtorp, S. M., & Holck, A. L. (2011). Multiplex, Quantitative, Ligation-Dependent Probe Amplification for Determination of Allergens in Food. Journal of Agricultural and Food Chemistry, 59(10), 5231-5239. doi:10.1021/jf200545jCheng, F., Wu, J., Zhang, J., Pan, A., Quan, S., Zhang, D., … Yang, L. (2016). Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 199, 799-808. doi:10.1016/j.foodchem.2015.12.058Schouten, J. P. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), 57e-57. doi:10.1093/nar/gnf056López-Calleja, I. M., García, A., Madrid, R., García, T., Martín, R., & González, I. (2017). Multiplex ligation-dependent probe amplification (MLPA) for simultaneous detection of DNA from sunflower, poppy, flaxseed, sesame and soy allergenic ingredients in commercial food products. Food Control, 71, 301-310. doi:10.1016/j.foodcont.2016.06.014Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P., & Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry, 221, 1843-1850. doi:10.1016/j.foodchem.2016.10.091Puente-Lelievre, C., & Eischeid, A. C. (2018). Development and Evaluation of a Real-Time PCR Multiplex Assay for the Detection of Allergenic Peanut Using Chloroplast DNA Markers. Journal of Agricultural and Food Chemistry, 66(32), 8623-8629. doi:10.1021/acs.jafc.8b02053Garino, C., De Paolis, A., Coïsson, J. D., Bianchi, D. M., Decastelli, L., & Arlorio, M. (2016). Sensitive and specific detection of pine nut (Pinus spp.) by real-time PCR in complex food products. Food Chemistry, 194, 980-985. doi:10.1016/j.foodchem.2015.08.114Xiao, G., Qin, C., Wenju, Z., & Qin, C. (2016). Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food. Journal of Dairy Science, 99(3), 1716-1724. doi:10.3168/jds.2015-10255Druml, B., & Cichna-Markl, M. (2014). High resolution melting (HRM) analysis of DNA – Its role and potential in food analysis. Food Chemistry, 158, 245-254. doi:10.1016/j.foodchem.2014.02.111Vossen, R. H. A. M., Aten, E., Roos, A., & den Dunnen, J. T. (2009). High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 30(6), 860-866. doi:10.1002/humu.21019Ding, Y., Jiang, G., Huang, L., Chen, C., Sun, J., & Zhu, C. (2020). DNA barcoding coupled with high‐resolution melting analysis for nut species and walnut milk beverage authentication. Journal of the Science of Food and Agriculture, 100(6), 2372-2379. doi:10.1002/jsfa.10241Fernandes, T. J. R., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2017). DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species. Food Chemistry, 230, 49-57. doi:10.1016/j.foodchem.2017.03.015Pereira, L., Gomes, S., Barrias, S., Fernandes, J. R., & Martins-Lopes, P. (2018). Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Research International, 103, 170-181. doi:10.1016/j.foodres.2017.10.026Martín-Fernández, B., Costa, J., de-los-Santos-Álvarez, N., López-Ruiz, B., Oliveira, M. B. P. P., & Mafra, I. (2016). High resolution melting analysis as a new approach to discriminate gluten-containing cereals. Food Chemistry, 211, 383-391. doi:10.1016/j.foodchem.2016.05.067Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., … Colston, B. W. (2011). High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Analytical Chemistry, 83(22), 8604-8610. doi:10.1021/ac202028gHindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J., … Tewari, M. (2013). Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods, 10(10), 1003-1005. doi:10.1038/nmeth.2633Deprez, L., Corbisier, P., Kortekaas, A.-M., Mazoua, S., Beaz Hidalgo, R., Trapmann, S., & Emons, H. (2016). Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomolecular Detection and Quantification, 9, 29-39. doi:10.1016/j.bdq.2016.08.002Cai, Y., He, Y., Lv, R., Chen, H., Wang, Q., & Pan, L. (2017). Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS ONE, 12(8), e0181949. doi:10.1371/journal.pone.0181949Witte, A. K., Mester, P., Fister, S., Witte, M., Schoder, D., & Rossmanith, P. (2016). A Systematic Investigation of Parameters Influencing Droplet Rain in the Listeria monocytogenes prfA Assay - Reduction of Ambiguous Results in ddPCR. PLOS ONE, 11(12), e0168179. doi:10.1371/journal.pone.0168179Mayer, W., Schuller, M., Viehauser, M. C., & Hochegger, R. (2018). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499-509. doi:10.1007/s00217-018-3182-5Köppel, R., Ledermann, R., van Velsen, F., Ganeshan, A., & Guertler, P. (2020). Duplex digital droplet PCR for the determination of apricot kernels in marzipan. European Food Research and Technology, 246(5), 965-970. doi:10.1007/s00217-020-03463-6Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882. doi:10.1038/nprot.2008.57Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 289(1), 150-154. doi:10.1006/bbrc.2001.5921Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. doi:10.1093/nar/28.12.e63Khorosheva, E. M., Karymov, M. A., Selck, D. A., & Ismagilov, R. F. (2015). Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Research, 44(2), e10-e10. doi:10.1093/nar/gkv877Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Carvalho, J., & Prado, M. (2018). Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR). Food Chemistry, 246, 156-163. do
    corecore